
How can Academic Software Research and Open Source Software
Development help each other?

Vamshi Ambati S P Kishore
Institute for Software Research International Language Technologies Institute

Carnegie Mellon University Carnegie Mellon University
 vamshi@andrew.cmu.edu skishore@cs.cmu.edu

Abstract

In this paper we discuss a few issues faced in
coordinating, managing and implementing academic
software research projects and suggest how some of
these issues can be addressed by adopting tools and
processes form Open Source Software Development.
At the same time we also discuss how a few issues in
Open Source Software Development (OSSD) projects
can be addressed by adopting processes from
Academic Research.

1. Introduction

Academic Software research has made substantive
contributions in varying degrees for the growth of
Software and Technology in diverse areas like data
mining, bioinformatics, astronomy, natural language
processing, medicine and others. With the wide
spread of internet, many universities and researchers
are working on collaborative projects from
geographically distant areas. A typical example is
the Universal Digital Library [10] project where
universities and researchers from India, China, and
United States are collaborating on massive
distributed sub-projects. However, characteristics of
academic research like rapid prototyping, less
documentation, frequent inflow and outflow of
members (graduate students and researchers) of the
project though useful and productive in collocated
projects, are beginning to create concerns in the
academic community as the projects scale and move
into geographically distributed environments. The
characteristics of academic research mentioned
above are essentially deviations from the
conventional software engineering practices and it is
worth to investigate different paradigms of software
development and imbibe processes and practices into
the software development cycle in academic research
in order to address these issues.

In this paper, we support Open Source
Software Development as a paradigm bearing close
resemblances to academic software research and

propose that issues in academic research can be
solved by adopting some of the practices and tools
from OSSD. We also discuss few issues in OSSD
like the gap between the developer and non-
developer communities and try to address some of
them by adopting practices from academic software
research.

The next few sections are organized as follows.
Section 2 discusses few characteristics and issues
that crop up in Academic Software Research. In
section 3 we discuss Open Source Software
development as an emerging paradigm in Software
Engineering and the issues faced by OSSD. Section 4
suggests tools and processes that can be adopted by
Academic Research while section 5 discusses how
OSSD can benefit from processes adopted from
Academic Software Research. Finally we conclude
by suggesting some tools that are needed for the
benefit of both the academic and open source
communities.

2. Academic Software Research

Academic Software Research is a team based activity
in which students or researchers in Academic
institutions involve themselves in building large
scale software systems with the guidance of a faculty
member or senior researchers. These projects are
mostly funded and usually managed by a single
institution including various other departments in
it .With the advent and extensive use of internet for
software development, the scenario is changing and
projects are now involving groups from globally
distributed institutions. However, to make
development easier these projects are always divided
into sub problems and the researchers are allowed to
pick the problem that they are interested in. As a
result a single person or a small group gets to work
on each of the sub problems identified.

Although results are promising in academic
software research and development, academicians
complain that in massive distributed projects

mailto:vamshi@andrew.cmu.edu
mailto:skishore@cs.cmu.edu

involving various academic institutions issues of
collaboration, communication and control creep in
which if handled appropriately would enable the
successful completion of projects in a cheaper and
elegant way. Another issue that affects academic
research adversely is projects in which an active
developer opts out of the project suddenly or leaves
the institution after the completion of his academics.
There is a lot of contextual information and
assumptions involved in the project, made by that
developer at various moments of time and all these
are now lost and the code is the only artifact that
remains. This makes the learning curve of a new
comer very time consuming and sometimes the code
becomes so obsolete and un-understandable that the
new comer opts to redo the code himself. This
introduces an unexpected delay in the project and
can also cause unforeseen problems to the entire
project if this group is a critical component for the
project as a whole. Some of the other issues which
are indirectly related to the already mentioned are:

1) Documentation in research projects is very
sparse. Research involves results and achieving
these results becomes the primary goal during
the developmental phase and so documentation
is usually done at the end of development. But
research projects often don’t work on a deadline.
And even if they did work that way, it is very
unlikely that the person who started the project
is the same as the person who finishes it. As a
result in this mixture the documentation part is
lost which makes things tougher at the end.

2) In Academic research the person who works on
the module is the person who knows the most
about it and the bugs in it. Bug tracking is very
specific to the group or developer. Other groups
are only concerned about the results of the
research and not how it works. As a result, when
the project scales these bugs grow and lead the
researcher into performing quick fixes which
turn out to be hazardous to the quality and the
long term goals of the project.

Methods and Tools which address these issues
should evolve. A few suggestions are made in the
final sections of the paper, but there is a requirement
for more of them. We strongly feel that if these
issues are addressed completely, academic research
can be more productive and produce a double fold of
the existing outputs.

3. Open Source Software Development

The open source model of software development has
gained the attention of the business, the practitioners

and the research communities [6]. It is characterized
as a fundamentally new way to develop software [5].

Open source developments typically have a
central person or body that selects some subset of the
developed code for the “official” releases and makes
them widely available for distribution [1]. Tasks are
not assigned; any person interested in a particular
aspect of development can choose to participate and
contribute to it. There is no explicit system-level
design or even detailed design [5] other than in the
heads of a few set of core developers. Communities
for different phases of software development are
formed. Every interested and motivated person joins
the community that suits his level of interest and
expertise. Usually the set of core developers is very
small and they have the editing and commit
privileges over the modules in the code. Then there
are several other communities each consisting of
potentially large numbers of volunteers for bug-fixes,
testing, bug-reporting, documentation, release
management etc. The communities are globally
separated and co-ordination between them takes
place in ad hoc ways [1]. Code is written with more
care and creativity because developers are working
only on things for which they have a real passion [8].

Though the quality and dependability of today’s
open source software projects have proved to be
roughly on par with commercial developed software
[4], we feel there are several areas where there are
opportunities for improvement. For example often
new developers have to understand the code and
community practices and culture in order to
contribute to the project. And there isn’t much
documentation as most of the OSS projects can not
afford extensive documentation [3]. Therefore it
remains an obstacle for the initiation and infusion of
new members into existing communities. Another
significant issue is that the feedbacks of non-
developers are not often heard on the mailing lists.
This we feel is because the feedbacks from non-
developers are treated as unpractical by the
developers. Bringing awareness of the project and
work culture and creating familiarity with tools
among the huge user community seems a challenge.
If it can be achieved we would see more users
joining the developer community and this would see
improved and constructive interactions between the
different communities.

4. OSSD helps Academic Software
Research

In order to address issues in academic
research mentioned in section 2 we reverted to the
two most popular Software Engineering paradigms

in the present world – Proprietary and Open Source
Software development, to see if any of them have a
closest possible solution.

For years now, Proprietary Software
development has successfully implemented methods
of enforcing opt-out rules or agreements or by
producing extensive documentation to avoid issues
that might arise due to persons leaving projects
abruptly. Such methods clearly can not be adopted in
Academic research as no one can be bound to
agreements in Academia. Also, the communication
methods of Proprietary Software development are
person to person communications and do not scale as
size and complexity quickly overwhelm
communication channels [1]. Ad hoc communication
is always necessary however, as a default means of
overcoming coordination problems [1].

We then turned to Open Source Software
Development which bears common similarities with
Academic Research [2]. Observing the
characteristics of Academic Software Research and
the characteristics of OSSD mentioned in the
previous sections we support this similarity and
propose that academic software research can benefit
the most by adopting methods and practices from
OSSD.

Adopt existing tools: OSSD has created for itself a
set of software engineering tools with features that fit
the characteristics of open source development
process [7]. It has addressed similar issues of
collaboration and communication that academic
research is facing through these efficient set of tools.
A comprehensive list of tools that were used in most
successful Open source projects and Research
projects in various phases of software development is
presented in table below. Also, the first step in
adopting OSSD processes and methods would
require the adoption of these tools [7].

Table 1 Some common tools used in OSSD

Version control CVS, Subversion, WinCVS,
ViewCVS

Issue tracking Bugzilla,
Gnats,DebBugs,Bonsai

Communication Mailman, IRC, MajorDomo,
Ezmlm

Build systems Ant, Make,Autoconf

Design and code
generation

ArgoUM ,XDoclet, Castor

Testing tools DejaGnu, Tinderbox,
JUnit,Lint, CodeStriker

Collaboration
Environments

SourceForge,Tigris,
SourceCast

Peer reviews: Open source software development
has benefited from “peer reviews”. They have been
recognized as a widely used and important quality
assurance process in OSSD. A peer review is an
informal review where someone other than the
author, either collocated or distributed, checks the
code with purpose of finding defects. It also
maintains a healthy and competitive environment
amongst the developers. In academic research a
particular group of developers or in most cases just
one developer is given the responsibility of a sub-
problem and then the solution is expected of him.
This would sometimes lead to group specific or
person specific results. Introducing a “peer review”
in academic research would result in many people to
get familiar with the work done in the sub-problem
and would assure quality and maintainability to the
code.

Community development: In OSSD there are
groups of members called “communities” for various
phases of the software development. There is a small
set of core developers who have the editing and
commit privileges and decides what goes into the
code. This is the developer community. There are
other large communities for each task of bug-fixing,
testing, bug-reporting, documentation, release
management etc. This helps the developers to stay
concentrated on their work and also enables
extensive testing and efficient bug fixing. This may
not be feasible in Academic research but a
reasonable way of implementation of the concept of
a “community” in academic research could be that
every sub-group working on a sub-problem could act
as a community to the other sub-group.

Several projects at Carnegie Mellon University
(CMU) have benefited from the open source
practices and methodologies. RADAR [9] project
funded by DARPA is a very good example of one
such project. Interactions and communications of
different groups take place over the mailing lists
which not only enable ad-hoc communication but
also act as a log of the interactions. Every leader of a
subgroup in RADAR is also a member of one or
more groups and acts as a reviewer for that group,
ensuring the quality across the sub projects.

5. Academic Research helps OSSD

In this section let us look at how we can attempt to
solve some of the issues of Open Source Software
development mentioned in section 3. We feel that a
significant portion of the issues mentioned arise due
to the fact that as projects scale in size like the

Apache and Mozilla, it becomes extremely difficult
for a new comer to join any of the non user
communities [3]. As a result there is a huge gap
between the experts in that community and the new
comers. We feel that the way academic research
solves this issue can be helpful to the Open Source
Software Development and we also feel that
adopting this does not violate the characteristics of
Open Source Software Development.

In Academic Research whenever a new comer
comes into the project he looks for people who can
teach him and these are often the senior researchers
or faculty in that project. In OSSD there has been
activity in the mailing lists which creates an
asynchronous mode of learning. But since code
developers are mostly involved in other activities
most of the questions are left unanswered. So,
bringing in the notion of a community of teaching
assistants would solve this problem to a considerable
extent. Among many motivations for which
developers work on OSS projects fame, fun and
learning are a few. A good way of learning is by
teaching. The members in such a “teaching
community” would be people who are in OSSD just
for learning and are self-motivated and willing to
teach what they have learnt. The result of growth of
such a community would make the non-developers
more knowledgeable and also creates a way for more
users to join the developer community which is good
for further progress in the project.

6. Need for new tools

We need more tools to adequately address the issues
in both Academic Software Research and Open
Source software development. A potential artifact
that we have figured out in any software
development involving research is an intermediate
result. The problem of a researcher or a developer
leaving the project can only be addressed in its full if
we can completely know and understand these
results and the various issues that the developer
treaded upon while achieving them. Results indicate
the progress of the project. The research community
needs tools that keep track of results and the
configurations of the project that lead to such results.

Although there is a wide range of tools available
in OSSD, in order to support many other software
engineering practices like requirements management,
project management, metrics estimation, scheduling,
program analysis and test suite design etc [7] we still
need more of them. The open source community and
the academic research community should involve in
building these tools for the benefit of many.

7. Conclusion

We have tried to raise issues in Academic Software
Research and suggested that they can be addressed
by adopting from OSSD tools for development and
collaboration and processes and methodologies like
“peer reviews” and community development. We
also discussed issues in OSSD and suggested a
“teaching community” as a possible solution for
some of the issues.

8. Acknowledgements

We are indebted to the valuable suggestions and
comments of Dr. Raj Reddy (CMU), Dr. William
Scherlis (CMU) and Dr. Anthony Tomasic (CMU).

9. References

[1] Mockus, A., Fielding, R., & Herbsleb, J.D. Two
Case Studies of Open Source Software
Development: Apache and Mozilla (2002). ACM
Transactions on Software Engineering and
Methodology, 11, 3, pp. 309-346.
[2] Nikolai Bezroukov „Open Source Software
Development as a Special Type of Academic
Research”
URL:http://www.firstmonday.dk/issues/issue4_10/be
zroukov/
[3] Anupriya, Herbsleb and Sycara(2003)
“Addressing Challenges to Open Source
Collaboration With the Semantic Web”. The 3rd

Workshop on Open Source Software Engineering.
[4] T J Halloran and William L Scherlis (2002)
“High Quality and Open Source”. Presented at the
2nd Workshop on Open Source Software Engineering,
[5] P.Vixie, “Software Engineering,” in Open
Sources: Voices from the Open Source Revolution,
C Dibona, S Ockman and M.Stone, Eds. Sebastopol,
CA:O’Reilly, 1999, pp.91-100.
[6]. Capiluppi A., Lago P., Morisio M., 2002,
"Characterizing the OSS process", at the 2nd

Workshop on Open Source Software Engineering,
Int. Conf. Software Engineering, May 2002
 [7] Jason E Robbins (2002) “Adopting OSSE
Practices by Adopting OSS Tools”. Chapter in
Perspectives on Open Source and Free
Software,J.Feller, B.Fitzerlad et al.
[8] E. S Raymond, “The Cathedral and the Baazar,”
http://www.firstmonday.dk/issues/issue3_3/raymond
/
[9] The RADAR project (CMU)
http://www.radar.cs.cmu.edu/
[10]The Universal Digital Library Project
http://www.ulib.org/

http://www.firstmonday.dk/issues/issue4_10/
http://www.firstmonday.dk/issues/issue3_3/raymond/
http://www.radar.cs.cmu.edu/

